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Abstract. The phase transitions of lattice fluids with molecules defined by first-neighbour 
exclusion, and interacting at short range, are considered using extended Kikuchi approxima- 
tions. O n  the square lattice, a second-neighbour interaction does not produce a disordered 
low-density transition, but does make the packing transition first order below a critical 
temperature CB = - 1.05. The resulting phase diagram therefore has only generalized fluid 
and solid regions. In a Kikuchi double-square calculation with third-neighbour interaction 
a disordered transition is produced, but this overlaps with the ordered state and again there 
is no stable intermediate liquid phase. Short-range interactions produce qualitatively the 
same effect on the triangular and simple cubic lattices. Particularly for the ordered state, the 
large sets of non-linear equations produced by an analytical treatment of extended Kikuchi 
approximations have limited the range of possible calculations. We have found numerical 
solution of these equations successful only with very good initial guesses, and therefore 
we have used a numerical optimization procedure in which linear constraints can be applied 
to minimize the free energy directly, producing a procedure through which Kikuchi calcula- 
tions can be to a large extent automated, and large problems successfully attempted. 

1. Introduction 

In hard core lattice fluids, molecules are represented by occupied vertices which exclude 
from occupancy one or more neighbouring vertices, and it is now well established that 
these models possess an order-disorder transition akin to that of continuum hard discs 
or spheres, and to the fluid-solid transition of real fluids. The transition arises solely 
from geometrical packing effects due to the hard core, and in the case where no other 
interactions are considered (effectively at infinite temperature), much work has been done 
using the Kikuchi method (Burley 1961, 1965), the matrix method (Ree and Chesnut 
1966, Runnels and Combs 1966, Runnels er al 1967), and series expansions (Gaunt and 
Fisher 1965, Gaunt 1967). The result is that, for first neighbours excluded, the infinite 
temperature transition is now well characterized for most lattices (a tabular summary can 
be found in Kaye 1973). Less extensive work has been done on models with more 
extended hard cores (Bellemans and Nigam 1967, Orban and Bellemans 1968, Runnels 
er al 1971). 

The gas-liquid transition on the other hand depends on attractive interactions 
between molecules, and even the simplest lattice fluid with no exclusions (a transforma- 
tion of the Ising ferromagnet, cf Fisher 1967) displays this type of transition when 
attractive interactions between nearest neighbour pairs are included. 
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844 R D Kaye and D M  Burley 

In a recent paper, Hall and Stell (1973) have collected together most of the recent 
results from the above papers. They utilize this material, which concerns short-range 
interactions, by adding a long-range tail. There are no new results for short-range 
interactions so in the present work, which is concerned solely with such interactions, 
comparisons will only be made with the original papers. The value of Hall and Stell’s 
work is in considering whether or not the addition of a long-range tail will produce a 
realistic phase diagram. A similar problem is considered in a subsequent publication 
(Kaye and Burley 1974), and comparisons with the Hall and Stell results are more 
appropriately made there. 

In this paper we extend previous Kikuchi calculations on the first neighbour ex- 
cluded model by using larger primary Kikuchi figures, in order both to improve the 
quantitative results for the infinite temperature transition, and to include interactions 
and therefore the possibility of both transitions in the same model. In the first instance 
a relatively simple calculation based on a primary square figure is used to study the 
effect of a single attractive interaction between second neighbours in the case of the 
square lattice model. A larger calculation using a primary double square is then used to 
improve the quantitative results and to introduce a second interaction between third 
neighbours. In this case the Kikuchi calculation cannot be carried through analytically, 
and consequently we have developed a numerical procedure (cf 0 5 )  which has proved to 
be a powerful method for the larger Kikuchi calculations, and made tractable several 
new problems. 

Similar calculations are then performed for the same model on the triangular and 
simple cubic lattices, again to investigate the effect of a single interaction, and in the 
former case also to extend Kikuchi calculations for the infinite temperature transition, 
in order to investigate the discrepancy between the Kikuchi results and that obtained by 
series and matrix methods. 

2. Model 

In order to illustrate the model and the solution technique, a square lattice of N sides 
and area per molecule a is considered. Molecules are defined by an occupied vertex 
with first neighbour exclusion, so that the effective molecular area is 2a. At maximum 
density the molecules fully occupy one of two possible interpenetrating sublattices, as 
shown in figure 1, and the existence of an ordered state at lower densities is character- 
ized by a continued imbalance in the occupancy of these two sublattices, as opposed to a 
disordered state in which the lattice is fully homogeneous. In a Kikuchi calculation the 
lattice is described in terms of the configurations of small subfigures of the lattice, and 
consequently to include the possibility of distinguishing between ordered and dis- 
ordered states, the two sublattices have to be labelled. For a detailed discussion of this 
point see Kaye (1973). 

In the triangular and simple cubic lattices the model is similarly defined except 
that there are now different possible sublattices and labellings. 

3. Single-square calculations 

The lattice is described in terms of the probabilities (fraction variables) of the primary 
and secondary subfigures shown in table 1. The degeneracy of each subfigure, shown in 
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Figure 1. Labelling of the square lattice to describe the ordered state, producing two inter- 
penetrating sublattices. @ Fully occupied sublattice representing ordered maximum density 
state. /,. Molecular 'boundaries'. 

Table 1. 

brackets alongside it, takes into account the symmetry of the figure with respect to 
the lattice, and the single interaction is also shown in the table. 

There exist the following relations between the primary and secondary fraction 
variables (fu) : 

x 1  = Y l + Y 3  

x 2  = Yz 
x 3  = Y l + Y 2  

x4 = Y 3  

y, = W , + W , + W ,  

Y 2  = w 2  + w4 

Y 3  = w 3 + w 5  
(1) 
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and there is a normalization among the 5 spanning variables (wi )  

* = w,+2w,+2w,+w4+w, -1  = 0, ( 2 )  

which reduces the number of independent variables to 4. 
Following the method and notation of Kikuchi (cf Burley 1972 or Kaye 1973), the 

total number of configurations of an ensemble of L identical and independent lattices 
can be expressed in terms of the fraction variables by 

and the entropy of a single lattice as 

k 

L 
S = -In G,. 

From the primary fraction variables the total energy of the lattice is 

and the molecular density 

The appropriate grand thermodynamic potential gives 

where p = l /kT and p is a potential for the exchange of molecules and unoccupied 
lattice sites. Since S, U and p are all available in terms of the spanning variables, this 
expression can now be maximized. Rather than use the normalization to reduce the 
number of variables immediately, it is convenient for obtaining the pressure to maximize 
with respect to all the spanning variables, using a Lagrange multiplier on equation (2) 
as follows, 

i = 1 ,  . . . ,  5 .  
dPap 21) -+A- = 0 awi awi 

Eliminating and p from the 5 resulting equations which define equilibrium gives 

3. = -In(( Y 2  1 
) ,  x 1  x3)1'2 w 1 

(9 )  

and 
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and 3 relations between the 5 spanning variables 

w1w4q1 = wi 
WlWS‘11 = ws 

wsy:(x,x4)”2 = w4y:(x2x,)”2 

where the temperature variable is defined by 

‘11 = exp(r1B). (14) 

With equation (2) these relations serve to determine all the spanning variables in terms 
of one parameter, conveniently taken as the density. From equation (8) it is easily 
shown that the pressure is given by 

Pap = - I . ,  (15) 

and all the other thermodynamic functions then follow from equations (5H7). 
With the sublattices made equivalent, the disordered solution follows easily. 

Equation (13) becomes an identity and equations (11) and (12) are identical, and the 
one remaining equation then provides a quadratic solution, 

Pap = 2ln(l-2p)-ln(1-p)-ln(1-2p-2w2), (16) 

w 3 2 -  ‘1L1)- w 2  + ( p  - 2p2) = 0. 

where w2 satisfies 

(17) 

The full ordered solution is more difficult, and it is inconvenient to solve directly in 
terms of the density. However a solution is possible by rewriting the equations in 
terms of reduced fraction variables ( f u i ) ,  where 

and using a fixed parameter ~ 2 / ~ 4  in place of the density. All the fraction variables can 
then be calculated in terms of this parameter via a quartic equation. 

The results from both ordered and disordered solutions are described in 0 6. 

4. Double-square calculations 

In order to introduce a second interaction c 2 ,  and at the same time improve the approxi- 
mations, the configurations of a double square are now used as the primary variable set. 
Using the C scheme of Kikuchi and Brush (1967) for this subfigure, 

and so the necessary function variables are those in table 2, with the relations 
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Table 2 .  

WI 

W 2  

w3 

w4 

w 5  

" I  

"2 

"3 

"4 

"S 

'6 

"1 

"8 

Y l  

Y 2  

Y 3  
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Of the 5 extra relations marked by t, two are independent and can be used to reduce the 
number of spanning variables for this problem to 10. The normalization is then 

$ = ~ 1 + 3 z , $ 3 z ~ + z 6 + z 7 + 2 z 8 + 2 z 9 + 4 z 1 0 + z 1 1 f z ~ 2 - 1  = 0, (21) 

and the energy and density are given by 

U = N E l ( Z 6  + z 7  + z l l  + Z 1 2 ) f  N E z ( Z 8  f z g  + z 1 1  f z , 2 ) ,  (22) 

p = 3 z 2  + z 3  f z 6  f z 7  + 2 8  + z g  + 2210 + z 1 1  + z 1 2 ) ;  0 d p < $. (23) 

In a disordered solution, the number of spanning variables is reduced to 6, and an 
analytic solution following the lines of 4 3 was obtained. However in the ordered case 
there are 9 equations to be solved, and it has not been found possible to do this analytic- 
ally. A numerical procedure has been used therefore, which is described below. 

5. A numerical procedure for large scale Kikuchi calculations 

The Newton-Raphson method has been used to solve the sets of equations coming 
from Kikuchi calculations (Kikuchi 1966), but where the number of independent 
variables is high, or where good initial guesses for them are not available, the method 
fails, largely because of overshooting the constraints on the fraction variables 

1 

ai 
0 < f U i  < -, (24) 

where ai represents the degeneracy of the general fraction variable. 
We have therefore developed a numerical procedure that can be used for all Kikuchi 

problems, with the advantage that only one computer program has to be written, to 
which different data sets defining specific problems can be supplied. The method is 
essentially a numerical analogue of the usual canonical method of statistical mechanics 
(ie the Helmholtz free energy replaces the potential of equation (7)), and will be referred 
to by the shorthand COFE (constrained optimization of free energy). 

In a problem which has 4 spanning variables, the normalization is used to express all 
variables, and via the methods of 4 3 the entropy, internal and free energies, in terms of 
4 -  1 independent variables, one of which is chosen, if possible, to be the density. The 
derivatives of the free energy with respect to the independent variables are then cal- 
culated, and holding the density constant, a numerical method of Fletcher (1968) is used 
to maximize the general term of the canonical sum with respect to the remaining q - 2 
variables, whilst applying the constraints of equation (24). A successful optimization 
gives the equilibrium values of the independent variables and that of the canonical sum, 
which is equated with its maximum term. All the thermodynamic functions can then be 
calculated. 

In practice all the details of a particular problem, including the degeneracy factor 
GL,  the constraints on the fraction variables, the energy expression and the temperature 
factors t i p ,  are codified in a set of matrices. With the density and temperature factors 
specified, these matrices are used to formulate a sub-procedure which calculates values 
for the general term of the canonical sum for any feasible set of the remaining indepen- 
dent variables. With an initial guess for these variables, the maximization is performed, 
and from an initial solution calculation over the whole range of density and temperature 
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is incorporated into the procedure by using previous solutions in a cubic extrapolation 
to provide guesses for subsequent ones. 

Apart from its generality the COFE procedure has proved powerful, providing solu- 
tions so far to problems with up to 29 independent variables. Its success is largely due to 
the Fletcher optimization method. Developed from that of Davidon (1959), it is both 
more efficient and also allows linear equality or inequality constraints to be applied 
to the independent variables. Without this facility a procedure such as COFE has not 
been feasible, since previous maximization methods such as that of Davidon search 
over an unbounded variable space and lead to calculations with negative fraction 
variables which effectively stops the search. 

6. !3quare lattice results 

The effect of introducing a single interaction into the primary square calculation is 
shown in figure 2. For q 1  = 1 (ie at infinite temperature), the result of Burley (1961) is 
reproduced, with a discontinuous second-order transition to an ordered state at 
p = 0.317, the compressibility of both phases at this point remaining finite. In this 
context, ‘discontinuous’ means the sharp change of slope at the transition which occurs 
in a Kikuchi calculation, as opposed to the ’continuous’ change which results from series 
and matrix calculations. As the temperature is lowered, the transition moves to lower 
densities, with a corresponding increase in the compressibility of the ordered state at the 

P 

Figure 2. Single-square approximation, the effect of temperature on the order-ilisorder 
transition. Comparison with Fisher’s exact isotherm. (Since we count twice as many 
interactions as Fisher, we use q l  = 1/ J2, corresponding to half the interaction energy in 
his calculation.) Curve A, q l  = 1.0, pure hard core case (cf Burley 1961). Pab and p at 
transition 0.693 and 0,317 respectively. Curve B, exact isotherm of Fisher (1963). Transition 
at (0,559, J2/4), with dP/dp = 0. Curve C, q I  = 1/J2. Transition at (0.465,0.288). Curve D, 
q l  = 0.35, critical temperature. Transition at (0.169, 0,202). with dP/dp = 0. Curve E. 
q ,  = 0.2, low temperature case. 
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transition, until at a critical temperature qE = 0.35, the compressibility of the ordered 
state becomes infinite. Below this temperature the transition is first order with a co- 
existence line located using the criterion of equal exchange potentials p. As can be seen 
from the free energy diagram (figure 3), the ordered state is stable at the higher densities. 
Also shown in figure 2 is the single exact isotherm of Fisher (1963), for a slightly modified 
version of the model in which only half the possible interactions are included. With only 
one interaction c1, the disordered isotherm does not have any transition (Van der Waals 
type of loop), and consequently there is only the direct transition for a generalized 
fluid to the ordered solid, with a P-Vdiagram which is shown in figure 4. 

0 0. I 0.2 0.3 0.4 05 
P 

Figure 3. Single-square approximation, ordered and disordered free energy curves. Curve A, 
q ,  = 1/J2, disordered state; curve B, q l  = 1/,/2, ordered state; curve C, q 1  = 0.5, dis- 
ordered state; curve D, q l  = 0.5, ordered state. a, is the Helmholtz free energy per lattice site. 

1 I I I I 
0; 0.1 0.2 03 0.4 0.5 

P 

Figure 4. Single-square approximation, diagram of state. A Critical point, q 1  = 0.35, 
p = 0.2, Pap = 0,168. B Infinite temperature, q 1  = 1.0, p = 0.317, Pap = 0.693. 
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The inclusion of the second interaction in the double-square calculation at once 
makes possible a disordered Van der Waals type of transition. This becomes possible 
for q 1  6 0.5, and is shown in figure 5. For the infinite temperature case, the result of the 
numerical calculations for the full ordered state is shown in figure 6. The larger subfigure 
brings an improvement in the estimate of the transition density from 0.317 in the single 
square calculation to p = 0.33 in the present case. A complete ordered calculation was 
also performed for the case q 1  = a, r , ~ ~  = 1/ J2, for which the disordered state (figure 5 )  
shows a pronounced Van der Waals loop. As can be seen in figure 7, the more stable 
ordered state undergoes a transition to a disordered state at a density of about 0.1, so 
overlapping the Van der Waals loop and leaving only one transition. It is first order, 
and the coexistence line is located as before. 

~ 0.4 
OO 01 0 2  0.3 

P 

P 
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5 
P 

Figure 5. Double-square approximation, disordered isotherms for two interactions. (a) 
q l  = 0.5. Curve A, qz = J2 (repulsion); curve B, q t  = 1.0 (infinite temperature); curve C,  
q 2  = 0.71 ; curve D, q 2  = 0.58; curve E, q z  = 0.5. (b)  q ,  = i ,  q 2  as in (a). (c) q l  = 0.25, 
q z  as in (a). 

5 
D 

Figure 6. Infinite temperature ordering transition comparison of approximations. Curve A, 
double-square approximation, p, = 0.33, Pap,  = 0.725 ; curve B, single-square approxima- 
tion, pt = 0.317, Pap, = 0.693. Matrix method: Runnels and Combs (1966), p ,  = 0.371, 
Pap, = 0.792; series expansions: Gaunt and Fisher (1965), p ,  = 0.370, Pap, = 0.792. 

Although the inclusion of an extra interaction produces a Van der Waals loop in the 
disordered curve, this transition is not stable and the overall qualitative behaviour is 
the same as that calculated using the simpler Kikuchi square, so that a phase diagram 
similar to that of figure 4 is to be expected from these larger calculations. Accordingly 
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P 

Figure 7. Double-square approximation, overlap of transitions. Curve 1, disordered state : 
q 1  = 0.25, q 2  = 1; J 2 ;  curve 2, ordered state: q l  = 0.25, q 2  = 1/ J2. Stable curve ABCD. 

we have not, in the double-square case performed calculations to locate precisely the 
critical temperature at which the transition changes from second to first order, nor have 
we attempted to draw an accurate phase diagram. 

The double-square calculation does however give a clear idea of how the Van der 
Waals loop is affected by changes in the potential, and some useful qualitative results 
can be seen. Even though these loops are overlapped by the ordered state, in more 
sophisticated models, the two transitions can be separated. A more detailed study of the 
dependence of the coexistence curve on the potential will be made in a further publication. 

7. Other lattices 

Calculations for the same model on the triangular and simple cubic lattices are similar 
to those above and consequently we omit detailed descriptions. 

In the triangular case a two triangle subfigure was used to incorporate a single 
interaction between second neighbours, and since there are three close packed sub- 
lattices, threefold labelling of the lattice is necessary. In a calculation with seven spanning 
variables an analytic solution using reduced variables (cf equation (18)) can be obtained, 
and an ordered state found in which two sublattices are equivalent but different from the 
third. The disordered state, with all sublattices equivalent, is easily calculated. In the 
infinite temperature case the result of Burley (1965) is reproduced, in which the transition 
is first order. At lower temperatures the single interaction produces a disordered Van 
der Waals loop, but as in the square lattice, the lowering of the density and pressure with 
temperature of the ordering transition leads to an overlap, and only the latter is stable. 
The resulting phase diagram is very similar to that of the square lattice, except for the 
position and nature of the infinite temperature transition, and the consequent lack of a 
critical point. 

COFE calculations using a W were also performed, with the same interaction between 
second neighbour, and the results are shown in figure 8, along with those of the simpler 
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P 

Figure 8. w approximation, pressure diagram. Orderdisorder transition and the effect 
of temperature. Curve A, q I  = 1.0; inset, pG = 0.246, ps = 0,258, Pap, = 079 at the transi- 
tion; curve B, q l  = 0.9; curve C, q l  = 0.8; curve D, q l  = 0.6. Kikuchi W pG = 0.228, 
ps = 0.257, Papl = 0.736; matrix method: Runnels and Combs (1966), second-order 
transition, p, = 0.279, PaB, = 0.843 ;series expansion: Gaunt (1967), second-order transition, 
pl = 0.277, Pa/?, = 0.839. 

calculation, and other methods. In the infinite temperature case the extent of the 
density discontinuity is much reduced in the improved approximation, and at lower 
temperatures the effect on the transition is qualitatively the same as that calculated 
using the simpler figure again with no separate disordered transition. 

First neighbour exclusion on the simple cubic lattice produces a maximum density 
configuration which can be considered as one of two possible FCC sublattices, so that a 
twofold labelling is necessary to describe the ordered state. We have performed calcula- 
tions using both a square and a cube as the primary subfigure, although as in the triangular 
lattice we do not describe these in detail since they are similar to those already described. 
In the former case an interaction c1 across the diagonal of a square is included, and 
analytic solutions for both states are possible, following the lines of 6 3. In the latter 
case a second interaction c2 across the diagonal of a cube can be included, and the 
ordered state now has to be solved using the COFE procedure. Clearly if c2 << c1 there 
exists the possibility of an intermediate stable ordered state which would be a BCC 
sublattice of the basic simple cubic lattice. There are four possible BCC sublattices, so 
that to describe this intermediate state four distinguishable types of lattice site would 
have to be labelled. Since the maximum density state would necessarily be a FCC one, 
this model could possibly describe transitions between different high-density ordered 
states, but since the fourfold labelling greatly increases the number of fraction variables, 
this problem must remain as a separate project. 
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The results for the simple cubic lattice are similar to those of the square lattice, with 
no separate liquid state, and are here only briefly summarized. The ordering transition 
is second order at infinite temperature, and in the square calculation is located at 
p = 0.1904, as found by Burley (1961). This is improved slightly to p = 0.2 in the cube 
calculation. The transition becomes first order at lower temperatures, and mapped in 
the square calculation, the phase diagram is similar to that in figure 4, with the critical 
point located by q1 = 0.75, p = 0.13 and Pap = 0.15. 

8. Discussion 

For the infinite temperature cases, new estimates of the ordered state transition points 
have been obtained using subfigures larger than those of previous Kikuchi calculations 
(Burley 1961, 1965). As can be seen in figures 6 and 8 the new calculations move the 
transition towards the higher densities and pressures of the matrix and series results, 
which are more accurate in locating the transition point. Also from these figures, and 
from figure 2 where Fisher’s exact isotherm is compared with its Kikuchi equivalent, it 
may be seen that the larger subfigure brings an improvement only near to the transition, 
the calculation being accurate at low or high densities. This aspect of Kikuchi calcula- 
tions is well known and arises from the fact that near the transition molecular correlations 
play a delicate and critical role, and can only be accurately described by the Kikuchi 
calculations within the limited range of the primary subfigure. 

The infinite temperature transition of the triangular lattice is of particular interest, 
since the matrix and series methods predict a second-order transition with zero slope 
in the isotherm but no density discontinuity. Although the transition remains first order 
in both ofthe Kikuchi calculations above, the density gap of the W calculation becomes 
much smaller than that in the two-triangle case. For the two-triangle calculation 

PG = 0.684~0, ps = O.771Po 

where in the larger W calculation 

PG = 0.738~6, ps = 0.774~0, 
which represents a density discontinuity of only some 5 %. Kikuchi has also performed 
these latter calculations (in a private communication to DMB), and obtains results very 
close to those quoted above. 

It is still possible that the transition on the triangular lattice is first order, with a very 
small density discontinuity. However as can be seen above the better approximation 
greatly weakens the transition, and in the following argument it seems as though even 
larger Kikuchi calculations will eventually produce a second-order transition with an 
infinity in the isothermal compressibility. Looking in detail at the transition (detail of 
figure 8), it can be seen that near the transition, the loop in the ordered state is very flat 
and that as the density of the ordered state decreases, the pressure and its gradient both 
decrease monotonically up to a point, labelled P in the figure, where the gradient becomes 
zero. This point is very close to the eventual order-disorder contact, which is effected by 
a short upward spike of the ordered isotherm. It is this spike which makes the transition 
first order, so it is important to realize that this spike also represents the most unreliable 
part of the whole Kikuchi calculation, since it occurs at the point where the small 
subfigure approximation forces the calculation into a discontinuous description of the 
transition between the two phases. It is quite possible that this spike is therefore an 



Phase transitions in lattice fluids I 857 

artefact and that the transition is in reality second order, with dP/dp = 0, as indicated 
by series and matrix calculations. This is confirmed by preliminary calculations using 
a subfigure by one of us (DMB), which indicate a further reduction in the density 
gap at the transition. 

When there is an attractive interaction only between second neighbours, that is 
between molecules touching as in the close packed configuration, there is in addition 
to the entropic advantage of regular packing at high densities, an energetic advantage, 
since only close packed configurations have finite internal energy. Accordingly the 
ordered state is stable at lower densities, and the transition becomes analogous to that 
of a normal fluid below the triple point, with direct condensation from vapour to solid. 

In the case of the square lattice these results are qualitatively in agreement with 
those of Runnels et a1 (1970), except that there the matrix method was used, and the 
second-order transition is continuous. Bearing in mind that the Kikuchi single-square 
calculation is the simplest which can describe the model, and the great difficulty of 
extrapolating to an infinite lattice in the matrix calculations, the difference between qc 
for the latter (estimated at 0-67) and for the present calculations is not serious and does not 
detract from the qualitative observations above. 

Even when the disordered state alone does exhibit a Van der Waals transition ; as 
in the square lattice with a second interaction, or the triangular lattice, the ordered 
state overlaps this ‘would-be’ transition and is stable to lower densities. This same lack 
of a liquid-like phase was also observed by Runnels et a1 (1971) when considering mole- 
cules defined by the exclusion of first and second neighbours on the triangular lattice, 
with one interaction between third neighbour. The direct condensation of vapour to 
solid in these models is a consequence of the fact that all the energetically favourable 
configurations also represent occupation of particular sublattices, whereas the existence 
of a stable liquid-like phase depends on disordered or homogeneous configurations 
with sufficient energy to induce local condensation. 

In order to overcome this difficulty it is likely that much more extended interactions 
will have to be introduced, requiring Kikuchi calculations of a much greater complexity. 
In this development the numerical procedure of 0 5 is crucial, and in a further publication 
(Kaye and Burley 1974), its application to such an extended problem will be described. 
In this context it may be noted that the usefulness of the Kikuchi method has been 
greatly extended by the development of a numerical solution procedure. It is not now 
limited to small primary subfigures and so can be used (without complex analytic 
manipulations) on a wide variety of lattice problems. In doing this its primary role would 
be to provide qualitative information, although more exact results could be obtained 
at the expense of more extensive computations. It may also be noted here that in the 
Kikuchi method, a disorded calculation can be performed, and a transition located, 
even if ultimately it is unstable. This enables both transitions to be followed as the 
interaction potential is modified, and conditions to be established under which a 
separation would take place. Like the COFE procedure, this facility turns out to be 
crucial for more sophisticated calculations, and does not exist in other methods. 
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